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The nonsteady motion of coaxial cylinders separated by a viscoelastic fluid is 
investigated. 

This article examines the joint nonsteady motion of a viscoelastic fluid and an internal 
cylinder coupled with an elastic torsion bar. The motion is induced by the impulsive rota- 
tion of an external cylinder (problem 2) [i]. The impulsive communication of the motion to 
the outer cylinder leads to the propagation of a shear wave across the gap in the direction 
of the internal cylinder. This phenomenon was analyzed in [i]. Two qualitatively different 
situations may be realized, depending on the relation between the time of passage of the 
wave across the gap t w and the relaxation time of the fluid %. If El<<1, then t B >>% [i]. 
In this case, the inner cylinder is moving in an almost purely viscous fluid. The effect of 
the elastic properties of the fluid is negligible. When El>>1, then t B <<% [i]. In this 
situation, the elastic properties of the fluid affect its motion in the gap and the motion 
of the inner cylinder. The shear wave approaching the inner cylinder leads to its rotation. 
This in turn causes the propagation of a shear wave in the opposite direction. A quasisteady 
flow regime is established after several passages of the shear wave across the gap. In this 
regime~ the shear stresses 2~r2TL across the gap remain nearly constant, and the inertia of 
the fluid can be ignored~ We will qualitatively analyze the effect of the rheological pro- 
perties of the fluid on the character of rotation of the inner cylinder at the quasisteady 
stage for Oldroyd's rheological model, which consists of a Maxwell element and a Newtonian 
element with the viscosity ~no, 0-----~--<!. The parameter B determines the ratio of the con- 
tributions of the Newtonian and Maxwell elements to the effective viscosity of the fluid. 
The motion of the cylinder and the stresses developed in the fluid are described by the fol- 
lowing system of equations: 

"q + ~ d'5 - -  ~1 (Ulh6~ - -  +181), z~  = ~]~ (UIh8~ --+/8s) ,  (1) 
dt 

w h e r e  ~]1 _-- ~ o ( 1 - - ~ ) ;  ~ = ~o~; 81 ---- ( 2 +  6)6 < 1; 8~ = 61 I + 8 <  I, a n d  t h e  r e m a i n i n g  n o t a t i o n  i s  
2 (i  + 6) 2 6 

explained in [i]. These equations were obtained from a system of compatible equations of 
fluid flow and internal-cylinder motion [i] which ignored the inertia of the fluid. We will 
write the initial conditions for these equations in the following form 

(0)=0, ~(0)=~, "~(0)=0. (2) 
Such initial conditions allow for consideration of the angular velocity of the inner cylin- 
der ~ acquired while the quasisteady flow regime is being established. It may be assumed 
that ~0 for Io<<I. When Io>>I, both cylinders acquire the same angular velocity ~ =U/R2 
immediately after passage of the shear wave. After introduction of the quantities: 

q~ = qT+ qost, "r I = z ~ t +  ~i, 
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Fig. i. Time dependence of angular deflection of 
internal cylinder in limiting cases of weak (a, b) and 
strong (c) damping: a) for viscous and viscoelastic 
(I~o<<i) fluids ~ =I; for a viscoelastic fluid (Imo>> 
i, eX<<l) ~ =B; b) for a viscoelastic fluid (E~o>>l, 
el>>l), c) for viscous and viscoelastic (leo2/e<< i) 
fluids: a =i; b =mo2/2e, for a viscoelastic fluid 
(Xs>>l, Imo2/E>>l) a = i; b = ~/2~; for a viscoelastic 
�9 fluid (ls > i, hoo~/~ ~ i) a =-~, b = I/BZ (i) ~st • 

/(~st) h + (g/too) 2exp (-~st); 2) 8~st -+ ~(B@st) '2 + (~/m0) 2 
exp (-B~t); 3) @~st(l- (i- 8)exp (-t/BE)); 4)~)~ 
~gst(l -- be-at), the + sign pertains to the top curve, 
while the- sign pertains to the bottom curve. 

Fig. 2. Angular deflection (@) and angular velocity 
(@) of internal cylinder in a viscous (i) and visco- 
elastic (2-4) fluid during the time t/~-~ 2) E1 =i, 
a=2, 3) 1 and 4, 4) i0 and 2. 

U 8 ~ 
%t = h co~ 6~ ' T~st = ~hU/h6.~, 

~ql - ~R~L~o 

system (i), (2) is converted to the following form, in variables which are displaced relative 
to the steady state 

d~ -~ 
-$, (3) 

~(0) = - - % t ,  (p(O) = ~ ,  ~ ] (O)=- -U/h,  

For a viscous fluid, 
der 

(3) leads to the familiar equation for the motion of an internal cylin- 

+ %$ + og = o, (4) 

thesolutions of which (Fig~ i) areas followsfor weak (C/mo ~ I) and strong (~o/c<<l) dampings: 

q~-----g~t  cos (oo t )exp( - -  st) + sin (~%t)exp(--et), (5)  
r o 
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Fig. 3 Fig. 4 

- - / /  

Fig. 3. Development of shear stresses on internal (~) and 
external (r=) cylinders for a viscous (i) and viscoelastic (2-4) 
fluid during the time t/I~; 2) E1 =i, ~ =2; 3) 1 and 4; 4) i0 
and 2. 

Fig. 4. Angular deflection of an internal cylinder in a visco- 
moX/s =I =0.838; elastic fluid: i) E1 =0.i; ~/~o =0.838; 2 .193; ~% 

mo% =I; 2) i; 0.0838~ 1193; 8.38; i005 3) i00; 83.8~ 0.i1935 
837.8; i0~ 4) i; 0.838; 11.93; 8.38~ I0; I) T~/T2 = (i+8)2~ II) 

�9 ~/~ =~2st/ st. 

When t h e  v i s c o u s  d r a g  o f  t h e  f l u i d  and t h e  e l a s t i c i t y  o f  t h e  t o r s i o n  b a r  a r e  commensura t e  
( (e  - -  mo)/~o<< 1 ) ,  t h e  e q u a t i o n  f o r  t h e  r e l a t i v e  d e f l e c t i o n  ~ t a k e s  t h e  fo rm;  

~ = - -  ~st exp ( - -a t )  cos (mr) ~st"0 exp ( - -  er sin (m 0 + a exp ( - -  el) sin (~t), ~ = eo V / 2  
g 

~ m m0 

(6) 

(7) 

We will subsequently analyze the conditions of motion of the cylinder for two limiting cases: 

=0(Io<I) and~=U/R2=~st-~([0~1), corresponding respectively to large and small moments of 

inertia of the internal cylinder. It can be seen from (5) that in the case of weak damping 
the inner cylinder completes damped oscillations with a frequency ~o and a damping factor ~. 
Here, the vibration of the cylinder with a low moment of inertia occurs with an amplitude 
which is /(~o/2E) 2 +i times greater than that of the vibrations of the cylinder with a high 
moment of inertia. There is also a shift in phase ~o = arctg(mo/2e). With strong damping, 
an internal cylinder with a low or high moment of inertia moves in accordance with the law 

=--~stexp ,----t . The solution (6) corresponds to the case when the inertial forces in 
2s / 

(4) can  be  i g n o r e d ,  i . e . ,  when t h e  m o t i o n  i s  d e s c r i b e d  by  t h e  e q u a t i o n  2s~  + wg~ = 0 .  For  t h e  
c a s e  o f  c o m p a r a b l e  t o r s i o n - b a r  e l a s t i c i t y  and v i s c o u s  d r a g  ((~ - -  ~ o ) / ~ o < < 1 ) ,  t h e  c h a r a c t e r  
of the motion of the inner cylinder will again be monotonic, but the motion will occur in the 
time i/~. Analysis of the solution of problem (3) in a viscous fluid permits us to distin- 
guish the following characteristic scales: i/~ -- the oscillation damping time for the inter- 
nal cylinder; c/~ -- the time for damping the aperiodic motion of the internal cylinder; 
2~/~o -- the period of natural vibration of the cylinder. The possible types of motion of 
the internal cylinder in a viscoelastic fluid depend on the relation between the relaxation 
time % and the time scales for the viscous fluid. Table 1 shows results of analysis of the 
roots of the following characteristic equation of system (3) for the limiting cases 
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TABLE 2. 
Numbers of Relaxation Oscillators 

L 

Ulmax 
~ .  10 
~.~o 

Results of Numerical Calculations for Different 

1,350 
0,428 
0,561 
O, 677 
0,137 

1,260 
O, 374 
O, 602 
0,589 
O, 201 

3j4 
! 

1,2201 1,205 
0,351] 0,343 
0,612 / 0,614 
0,5521 0,541 
0,2791 0,314 

Viscous 

fluid 

1,145 
O, 396 
0,475 
O, 629 
O, 189 

5 

1,200 
0,340 
0,614 
0,536 
0,328 

1,200 
0,340 
0,615 
0,532 
0,323 

14 

1,195 
O, 337 
0,616 
0,531 
O, 334 

24 

1,195 
O, 337 
0,616 
0,530 
O, 334 

k3§ § ~2§ § k§ 

Figure ! presents asymptotic relations for the angular deflection of the inner cylinder in a 
viscoelastic fluid. Let us analyze the limiting cases in greater detail. 

I. Weak Damping (C/~o<< i). In this case, the natural vibration period of the cylinder 
is considerably shorter than the time of damping of internal cylinder oscillation in the 
viscous fluid. The effect of inertial forces is great, and viscous drag is negligible. The 
cylinder completes damped oscillations, regardless of the relaxation time of the fluid. The 
character of the damping is determined by the relation between relaxation time k and the 
natural vibration period of the cylinder. 

Ioi. The relaxation time X is considerably less than the natural period of the cylin- 

der (~o<<i). Since XT I ~X~oT I ~TI, then the term XT I in the rheological equation of system 
(3) can be ignored. The motion of the inner cylinder will be the same as in the viscous 
fluid. The effect of the elastic properties of the fluid will lead only to a small increase 
in the natural frequency of the cylinder compared to the viscous fluid m =mo(l + (i -- B)~X). 

1.2. The relaxation time X is considerably greater than the natural period of the cylin- 
der (~o>>I). The elastic forces of the fluid have a substantial effect on the motion of the 
cylinder. There is a qualitative change in the character of motion of the cylinder, depend- 
ing on the relation between relaxation time X and the damping scale I/r 

1.2a. The relaxation time is considerably less than the damping time i/s (~ ~I). The 
change in shear stress succeeds in "tuning in" to the change in cylinder vibration amplitude. 
The inertial forces and the elastic forces of the torsion bar are substantial, and viscous 

A A 
drag is negligible. Here XT i %X~oTI>> ~I, and the rheological equation yields ~I ~-~/X. 
The equation of motion of the internal cylinder takes the form 

�9 ) 
from which it follows that the Maxwell element of the flow equation acts as an elastic ele- 
ment, increasing the natural frequency of the cylinder ~o =mo(l +s(l -- B)/%~), and the damp- 
ing factor decreases to the value Bs. The behavior of the stresses in the Maxwell element 
is similar to the change in ~. Since T =TI+~II =~I -- ~%--~/~ -- ~o~, and ~oX>>l, then 
%--~mo~ as well. System (3) can be solved for the case being considered by solving the 

motion equation of the cylinder in the viscous fluid with the substitution of Bs for s and 
~o (i +e(l -- ~)/%m~) for ~0o. The cylinder oscillation damping time in the viscoelastic fluid 
is i/~ times greater than in the viscous fluid. 

1.2b. The relaxation time is significantly greater than the characteristic damping. 
scale (g%>> i). The stress of the }~xwell element changes very slowly. The derivatives ~ and 

in the mo~ion equation of the inner_cylinder can be ignored, and ~I is determined from the 
2~ expression rI ~o~/2r Substituting ~I into the flow equation with allowance for the fact 

that ~%/2g>>i, we obtain ~%exp(--t/%). Since the total stress ~ %~, then the character of 
motion of the inner cylinder in the case being examined is determined by the change in ~. 
The motion is oscillatory in nature for t ~i/Bs. For t ~i/Be, the angular deflection 
increases monotonically: ~st(l -- (i -- ~)exp(--t/%)). For a cylinder with a high 
moment of inertia, ~ changes without exceeding ~st when ~ <1/2. The range of the oscilla- 
tions ~ is less 2B~s t <~st up to the time t ~ i/~, while ~ monotonically increases to ~st 
for t ~i/~s. For ~ >1/2, the oscillations take place up to t %I/B~ and occur with an 
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increase in @st- The value of ~ also monotonically approaches ~st for t) 1/Be. For a cylin- 
der with a low moment of inertia, the character of the dependence of ~ on time does not 
change qualitatively, but the oscillations occur with a considerably greater amplitude. 

2. Strong Damping (mo/s<< i). The motion of the cylinder is always damping and non- 
oscillatory, regardless of the relaxation properties of the fluid. It is characterized by 
two times: i/e and s/~. The effect of the torsion bar is negligible in the interval (0, 
l/s). Only the inertial forces and drag forces are significant. The effect of the inertial 
forces can be ignored in the interval (i/s, s/~). Different regimes of cylinder motion are 
possible, depending on the relation between relaxation time % and the characteristic times. 

2.1. Relaxation time % is significantly less than the characteristic damping time i/s 
2 < (%s<< I). The condition ~o%/S< i is also satisfied in this case. This means that the stiff- 

ness of the fluid layer is significantly greater than the stiffness of the torsion bar. The 
elastic properties of the fluid do not affect the motion of the cylinder. As in the viscous 
fluid, cylinder motion occurs in this case with strong damping. The formula for ~ is 
obtained by ignoring inertial forces in the cylinder motion equation and the time derivative 
of stress in the flow law. 

With s%>> i, when the relaxation time % significantly exceeds the characteristic scale 
l/E, the elastic properties of the fluid affect the character of motion of the cylinder in 
the first interval (0, l/s). Their effect in the second interval (l/g, s/m~) depends on the 
relation between the relaxation time of the fluid X and the characteristic time s/m~. 

2 < 2.2. The relaxation times/~ is considerably less than the characteristic time (moX/e <i). 
It is located within the interval (l/s, E/~). Here, the stiffness of the torsion bar is 
considerably less than the stiffness of the fluid layer. For tf l/g,@ ~(i -- exp(--2BEt))/ 
26s. The elastic properties of the fluid affect the motion of the inner cylinder up to the 
time t ~ 6X. At t) 6X, the elasticity of the fluid does not effect the angular deflection ~, 
which changes in the same manner as in the viscous fluid: ~ ~exp(--(m~/2s)t). The behavior 

2 of @ is nearly the same in both limiting cases g =0 and ~ =mo~st/2s. 

2.3. The relaxation time % is significantly greater than the characteristic times I/E, 
s/m~. Here the stiffness of the torsion bar is considerably greater than the stiffness of 

2 
the fluid layer (moX/e>> i). The elastic properties of the fluid determine the motion of the 
cylinder until @ reaches its steady-state value. As in the preceding case for t @ i/s~ the 
rotation of the internal cylinder occurs in accordance with the law ~ ~(i -- exp(--2~t))/ 
2Bs. The cylinder deflects through the angle ~st over a period of time of the order 26s/~, 
after which the deflection angle increases monotonically: @ ~@st(l -- (i -- 6)exp(--t/%)). 

In fact, since the inner cylinder moves slowly in this case, the derivatives ~ and ~ in the 
motion equation can be ignored. Then the stresses in the Maxwell element change in a manner 

~2 

similar to the angular deflection: ~i ~ 2 --~ )~,_ ~, and it follows from the flow law that 

~exp(--t/%). The solution obtained shows tnat the value of the moment of inertia of the 
cylinder does not change the monotonic nature of the increase in ~. 

3. The elastic properties of the torsion bar are comparable to the viscous drag forces 
of the fluid (s ~mo). The angular deflection increases monotonically, regardless of the 
relaxation time % and the moment of inertia of the cylinder. In the case 

3.1. the elasticity of the fluid has almost no effect on the character of motion of 
the cylinder. In contrast to the corresponding case for a viscous fluid, the steady-state 
value~st is established more slowly. In the case 3.2 for t fl/6s, ~s~(l--exp (--~)) 
The cylinder deflects through the angle 6@st in the time interval t ~i/6s, with the angle 
then increasing monotonically: ~st(l -- (i -- 6)exp(--t/%))~ The effect of the elastic 
properties of the fluid is manifest for the entire time of motion of the cylinder. 

The completed analysis shows that the manifestation of elastic properties of the fluid 
depends heavily on the relations between its theological parameters and the characteristics 
of the mechanical system. This is most clearly seen in cases 1.2, 2.3, and 3.2 (Fig. i), 
when stress relaxation is the longest process. 

Let us analyze the results of numerical investigations of the problem in question for a 
Maxwell liquid with a relaxation time spectrum. The calculations were performed for the 
same cylinder. The viscosity and relaxation properties of the fluid were varied. The 
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mathematical formulation of the problem was given in [I]. The development of the shear wave 
was also analyzed in detail in [i]. We will examine the transitional stage, which begins 
after the shear wave approaches the inner cylinder and continues until steady-state fluid 
flow is established. The motion of the cylinder in this stage is qualitatively similar for 
all of the variants calculated. We will give a more detailed account of the results for the 
case when the character of the damping is characterized by the condition S/~o = 8.378. Here 
an increase in El(~ol) from 1 to i0 leads to an increase in ~/r from 0.1193 to 1.193 and 
in ~% from 8.378 to 83.78. 

Receiving an impulse from the shear wave, the internal cylinder begins to rotate with 
increasing velocity. With an increase in E1 and ~, the moment of time tm at which the velo- 
city of the ~ylinder reaches its maximum value increases. Thus, if t m = 1.145 for a viscous 
fluid, then tm will increase from 1.195 to 1.380 with a change in a from 2 to 4 with E1 = i. 
With an increase in E1 to !0 for a = 2, we have t m = 2.300. The maximum value of the speed of 
rotation of the cylinder Ulmax characterizes the magnitude of the impulse the cylinder 
receives from the fluid. The numerical calculations and the analytical results in [i] showed 
that the value of u~max depends on the parameter a and changes slightly with a change in El: 
at a =2z Ulmax = 0.6157 for E1 =i and 0~ for E1 =i0. At the same time, with a =4 and 

El=l, ulmax =0.8422. For a viscous fluid (El=0), Ulmax = 0.475. 

The angle of deflection of the internal cylinder from the equilibrium position 
increases monotonically for both viscous and viscoelastic fluids (Fig. 2), reaching a steady- 
state value ~st =8.378 for the case in question at t § As already noted, the presence of 
a fluid with elastic properties leads to a reduction in the velocity of shear disturbances. 
Thus, for t<< tw, when the shear wave has not yet reached the internal cylinder, the values of 

and ~ are determined mainly only by the presence of the viscous terms in the flow equation 
[i], for which %ktw<< i, and these values are very small compared to the corresponding situa- 
tion for a viscous fluid (Fig. 2). 

For El>> I, the motion of the cylinder after the elastic shear wave reaches its surface 
is determined to a substantial degree by the elastic properties of the fluid. An increase 
in the parameter ~ decreases the effective viscosity at t <% [i]. This leads to an increase 
in the velocity of the internal cylinder and a corresponding increase in the angle ~ (curve 
3 in Fig. 2). The development of the shear stresses on the inner and outer cylinders is 
shown in Fig. 3. In a viscous fluid, the curve T2(t) has a characteristic minimum T2min 
in the region of positive values. There is then a monotonic increase in T2. The presence 
of a fluid with elastic properties shifts T2min into the region of negative values. A fur- 
ther increase in T2(t) for a fluid having elasticity is accompanied by an oscillatory change 
next to the corresponding values for the viscous fluid. An increase in ~ reinforces the 
oscillatory characte~ of the development of T2, while an increase in E1 has the opposite 
effect. Also, with an increase in both E1 and ~, the moment of onset of T2min is shifted 
into the region of large times. This is connected with a reduction in the rate of develop- 
ment of the shear perturbations. 

~le presence of a fluid with relaxation properties and, foremost, time-dependent effec- 
tive viscosity, leads to a situation whereby the curves of shear stress development on the 
internal cylinder T~ = T~(t) for a viscoelastic fluid always lie below the corresponding 
curves for a viscous fluid in the initial stage of flow. The shear stresses develop on a 
nearly stationary cylinder during this stage. The effect of the elastic forces of the tor- 
sion bar can be ignored during this period. The subsequent development of shear stresses 
on the internal cylinder is qualitatively similar for viscous and viscoelastic fluids: The 
curves T~ = T~(t) have characteristic regions of a local maximum and minimum in the transi- 
tional stage of flow. Here, for the viscoelastic fluid, a reduction in the velocity of the 
shear wave with an increase in ~ and E1 shifts the extremums of T~ in the direction of higher 
times. The determining role at this stage is played by two opposing factors: first, the 
increase in shear stress on the internal cylinder as a stationary cylinder, which depends on 
the properties of the fluid and the shear velocity communicated to the cylinder by the fluid; 
second, the shear stress due to the propagation of a shear wave from the internal cylinder 
after it is brought into motion and having a value proportional to the angular velocity of 
the cylinder ~(tw). 

Since the angular velocity of the cylinder ~(tw) during the initial period is slightly 
dependent on the value of the parameter El, then, allowing for the decrease in dynamic vis- 
cosity, an increase in E1 will be accompanied by smoother development of the shear stresses 
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on the internal cylinder. An increase in the parameter ~ will be accompanied by an increase 
in angular velocity ~(tw) and the "ranges" of the oscillatory change of TI. The effect of 
the number of terms in the flow equation [i] on the results of numerical calculation of the 
dynamics of the transitional process is shown in Table 2. For comparison, this table gives 
the kinematic and dynamic characteristics of the transitional process in the flow of a visco- 
elastic fluid (El =i, ~ = 2) for moments of time corresponding to the maximum velocity of the 
internal cylinder. It is apparent from Table 2 that the results of the calculations nearly 
coincide for N > 6. 

The transitional regime changes to a quasisteady regime with time: the moment of the 
shear stresses 2~r2TL remains nearly constant across the gap, and the ratio of the shear 
stresses on the inner and outer cylinders is close to the corresponding ratio for steady flow: 
T1(t)/r2(t) ~ (i +8) 2 As already noted, the relationship between the rheological constants 
of the fluid and the parameters of the mechanical system are manifest particularly clearly 
during the concluding, quasisteady stage of motion. Figure 4 presents results of calcula- 
tions of a problem on the motion of an internal cylinder in a viscoelastic fluid in its com- 
plete formulation [i] (the equations being in partial derivatives). The parameters of the 
mechanical system were fixed. The viscosity and relaxation time of the fluid were varied. 
The completed calculations confirmed the feasibility of using the quasisteady approach to 
analyze the motion of an internal cylinder. Figure 4 indicates the times at which this 
becomes applicable. However, it must be used with great care. Not all of the sections of 
the curves for the quasisteady approximation depicted in Fig. 1 are actually realized. Only 
the sections for t>> tw exist. For example, the results of numerical calculations with e/~o = 
0.0838, El=l, ~%/s = 1193, s% =8.378, and~o% =I00, corresponding to case l.2 inTable l, show 
that the section of damped oscillations depicted in Fig. ib at t ~ i/Bs is absent (see Fig. 
4). This is due to the fact that 

1 "Z(~)~sin~) 2~-1 ( ; ~  [(1 @ 6)~--1]I61 ( 1 ) - T  3 <1 .~\ = . 

et~ 26210 El 8~ 

and this interval lies in the transitional region, where the quasisteady approximation is 
inapplicable. The circles in Fig. 4 denote the times after which the inertia of the internal 
cylinder can be ignored and the shear stresses in the fluid can be measured from the angular 
deflection on the section of nonsteady motion. These results agree with the qualitative 
analysis of the equation of quasisteady motion of the internal cylinder. 

i. 
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